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Pure Bending

Pure Bending:  Prismatic members 

subjected to equal and opposite couples 

acting in the same longitudinal plane



MECHANICS OF MATERIALS

F
ifth

E
d

itio
n

Beer  • Johnston  •  DeWolf  •  Mazurek

4- 3

Other Loading Types

• Principle of Superposition:  The normal 

stress due to pure bending may be 

combined with the normal stress due to 

axial loading and shear stress due to 

shear loading to find the complete state 

of stress.

• Eccentric Loading:  Axial loading which 

does not pass through section centroid 

produces internal forces equivalent to an 

axial force and a couple

• Transverse Loading:  Concentrated or 

distributed transverse load produces 

internal forces equivalent to a shear 

force and a couple
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4.1 Symmetric Member in Pure Bending p.240

• From statics, a couple M consists of two equal 

and opposite forces.

• The sum of the components of the forces in any 

direction is zero.

• The moment is the same about any axis 

perpendicular to the plane of the couple and 

zero about any axis contained in the plane.

• Internal forces in any cross section are equivalent 

to a couple.  The moment of the couple is the 

section bending moment.
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• These requirements may be applied to the sums 

of the components and moments of the statically 

indeterminate elementary internal forces.
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4.1B Bending Deformations

• bends uniformly to form a circular arc

• cross-sectional plane passes through arc center

and remains planar

• length of top (AB) decreases and length of bottom 

(A’B’) increases

• a neutral surface must exist that is parallel to the 

upper and lower surfaces and for which the length 

does not change (εx=σx=0)

• stresses and strains are negative (compressive) 

above the neutral plane and positive (tension) 

below it

Beam with a plane of symmetry in pure 

bending:

• member remains symmetric
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Strain Due to Bending

Consider a beam segment of length L.

After deformation, the length of the neutral 

surface remains L.  At other sections,
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4.2 Stress and Deformations in the Elastic Range

• For a linearly elastic material,

• For static equilibrium,
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First moment with respect to neutral 

plane is zero.  Therefore, the neutral 

surface must pass through the 

section centroid.

• For static equilibrium,
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Beam Section Properties

• The maximum normal stress due to bending,

modulussection 

inertia ofmoment section  
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A beam section with a larger section modulus 

will have a lower maximum stress

• Consider a rectangular beam cross section,
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Between two beams with the same cross 

sectional area, the beam with the greater depth 

will be more effective in resisting bending.

• Structural steel beams are designed to have a 

large section modulus.
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Properties of American Standard Shapes
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Deformations in a Transverse Cross Section

• Deformation due to bending moment M is 

quantified by the curvature of the neutral surface
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Concept Application 4.1
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Concept Application 4.2
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Sample Problem 4.1



MECHANICS OF MATERIALS

F
ifth

E
d

itio
n

Beer  • Johnston  •  DeWolf  •  Mazurek

4- 14

Sample Problem 4.1
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Sample Problem 4.2

SOLUTION:

• Based on the cross section geometry, 

calculate the location of the section 

centroid and moment of inertia.
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• Apply the elastic flexural formula to 

find the maximum tensile and 

compressive stresses.
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• Calculate the curvature
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A cast-iron machine part is acted upon 

by a 3 kN-m couple.  Knowing E = 165 

GPa and neglecting the effects of fillets, 

determine (a) the maximum tensile and 

compressive stresses, (b) the radius of 

curvature.
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Sample Problem 4.2

SOLUTION:

Based on the cross section geometry, calculate 

the location of the section centroid and 

moment of inertia.
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Sample Problem 4.2

• Apply the elastic flexural formula to find the 

maximum tensile and compressive stresses.
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Problems

• Page 254

– 4-6
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4.4 Members Made of Composite Materials p259

• Normal strain varies linearly.


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• Consider a composite beam formed from 

two materials with E1 and E2.
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• Define a transformed section such that
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Concept Application 4.3

SOLUTION:

• Transform the bar to an equivalent cross 

section made entirely of brass

• Evaluate the cross sectional properties of 

the transformed section

• Calculate the maximum stress in the 

transformed section.  This is the correct 

maximum stress for the brass pieces of 

the bar.

• Determine the maximum stress in the 

steel portion of the bar by multiplying 

the maximum stress for the transformed 

section by the ratio of the moduli of 

elasticity.

Bar is made from bonded pieces of 

steel (Es = 200 GPa) and brass (Eb

= 100 GPa).  Determine the 

maximum stress in the steel and 

brass when a moment of 4.5 KNm 

is applied.
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Concept Application 4.3

• Evaluate the transformed cross sectional properties
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• Transform the bar to an equivalent cross section 

made entirely of brass.
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Sample Problem 4.3
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Reinforced Concrete Beams

• Concrete beams subjected to bending moments are 

reinforced by steel rods.

• To determine the location of the neutral axis,
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• The steel rods carry the entire tensile load below 

the neutral surface.  The upper part of the 

concrete beam carries the compressive load.

• In the transformed section, the cross sectional area 

of the steel, As, is replaced by the equivalent area

nAs where  n = Es/Ec.

• The normal stress in the concrete and steel
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Sample Problem 4.4

A concrete floor slab is reinforced with 16-mm-diameter steel rods.  The 

modulus of elasticity is 200 GPa for steel and 20 Gpa for concrete.  Using 

an allowable stress of 9 MPa for the concrete and 140MPa for the steel, 

determine the largerest bending moment per meter of width that can be sfely 

applied to the  slab.



MECHANICS OF MATERIALS

F
ifth

E
d

itio
n

Beer  • Johnston  •  DeWolf  •  Mazurek

4- 25

Sample Problem 4.4

• Evaluate the geometric properties of the 

transformed section.
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• Transform to a section made entirely of concrete.
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4.5 Stress Concentrations p.263

Stress concentrations may occur:

• in the vicinity of points where the 

loads are applied

I

Mc
Km =

• in the vicinity of abrupt changes 

in cross section
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Concept Application 4.4
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Problems

• Page 269

– 4-39, 4-47
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4.7 Eccentric Axial Loading in a Plane of Symmetry

• Validity requires stresses below proportional 

limit, deformations have negligible effect on 

geometry, and stresses not evaluated near points 

of load application.

• Eccentric loading

PdM
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• Stress due to eccentric loading found by 

superposing the uniform stress due to a centric 

load and linear stress distribution due a pure 

bending moment

( ) ( )

I

My

A

P

xxx

−=

+= bendingcentric 



MECHANICS OF MATERIALS

F
ifth

E
d

itio
n

Beer  • Johnston  •  DeWolf  •  Mazurek

4- 31

Concept Application 4.7

An open-link chain is obtained by 

bending low-carbon steel rods into the 

shape shown.  For 700 N load, determine 

(a) maximum tensile and compressive 

stresses, (b) distance between section 

centroid and neutral axis

SOLUTION:

• Find the equivalent centric load and 

bending moment

• Superpose the uniform stress due to 

the centric load and the linear stress 

due to the bending moment.

• Evaluate the maximum tensile and 

compressive stresses at the inner 

and outer edges, respectively, of the 

superposed stress distribution.

• Find the neutral axis by determining 

the location where the normal stress 

is zero.
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Concept Application 4.7

• Equivalent centric load 

and bending moment
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bending moment
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Concept Application 4.7

• Maximum tensile and compressive 

stresses
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• Neutral axis location
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Sample Problem 4.8

The largest allowable stresses for the cast 

iron link are 30 MPa in tension and 120 

MPa in compression.  Determine the largest 

force P which can be applied to the link.

SOLUTION:

• Determine equivalent centric load and 

bending moment.

• Evaluate the critical loads for the allowable 

tensile and compressive stresses.

• The largest allowable load is the smallest 

of the two critical loads.

From Sample Problem 4.2,
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• Superpose the stress due to a centric 

load and the stress due to bending.
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Sample Problem 4.8

• Determine equivalent centric and bending loads.
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Problems

• Page 298

– 4-106


