05 Advance Analysis 多步驟分析 / 平面應變&平面應力 非線性分析(接觸&材料設定) / 結構最佳化

2D Plane Problem

Plane stress, plane strain, axisymmetric, plane stress w/thk

Plane stress

2D Plane Problem

Plane strain

The cross-sections are along the thickness

2D Plane Problem

Axisymmetric

The cross-sections are along the radial directions

Plane Stress – Ex.10

The bicycle wrench shown in figure is made of steel with 3 mm thick. Determine the von-Mises stresses under the given distributed load and boundary conditions.

Plane Stress – Ex.10

The bicycle wrench shown in figure is made of steel with 3 mm thick. Determine the von-Mises stresses under the given distributed load and boundary conditions.

Stresses in a Long Cylinder

A long thick-walled cylinder (with inner radius = 4 in. and outer radius = 8 in.) made of steel is initially subjected to an constant pressure (of 30000 psi). The pressure is then removed and the cylinder is subjected to a constant rotation (60000 rpm) about its center line. Find the radial displacement, radial stress, and hoop stress at the two load steps. (Face mesh size = 0.25 in)

Plane Strain – Ex.11-1

Stresses in a Long Cylinder

A long thick-walled cylinder (with inner radius = 4 in. and outer radius = 8 in.) made of steel is initially subjected to an constant pressure (of 30000 psi). The pressure is then removed and the cylinder is subjected to a constant rotation (60000 rpm) about its center line. Find the radial displacement, radial stress, and hoop stress at the two load steps. (Face mesh size = 0.25 in)

<u>Step. 1</u>

8

Load Steps

- In a linear static or steady-state analysis, you can use different load steps to apply different sets of loads--wind load in the first load step, gravity load in the second load step, both loads and a different support condition in the third load step, and so on.
- In a transient analysis, multiple load steps apply different segments of the load history curve.

Introduction of ANSYS – Solution

Substeps

- Substeps are points within a load step at which solutions are calculated. You use them for different reasons:
 - In a linear or nonlinear transient analysis, use substeps to satisfy transient time integration rules
 - In a nonlinear static or steady-state analysis, use substeps to apply the loads gradually so that an accurate solution can be obtained.

Introduction of ANSYS – Solution

Step Controls

Project i Model (A4) i √ Geometry i √ Materials · √ Materials · √ Mesh

Details of "Analysis Settings" 🔷 🔻 🗖 🗖 🗙				
	Step Controls		*	
	Number Of Steps	2.		
	Current Step Number	2.		
	Step End Time	2. s		
_	Auto Time Stepping	Program Controlled	Ξ	
-	Solver Controls			
	Solver Type	Program Controlled		
	Weak Springs	Off		
	Solver Pivot Checking	Program Controlled		
	Large Deflection	Off		
	Inertia Relief	Off		
+	Rotordynamics Controls			
+	Restart Controls		Ψ.	

Plane Strain – Ex.11-2

Stresses in a Long Cylinder

A long thick-walled cylinder (with inner radius = 4 in. and outer radius = 8 in.) made of steel is initially subjected to an constant pressure (of 30000 psi). The pressure is then removed and the cylinder is subjected to a constant rotation (60000 rpm) about its center line. Find the radial displacement, radial stress, and hoop stress at the two load steps. (Face mesh size = 0.25 in)

<u>Step. 2</u>

學習目標

圓柱座標轉換 Face Meshing 角速度設定 多步驟分析

Nonlinear Structural Analysis

- 有限元素法中,常見的非線性(Nonlinear)問題主要可分為三類
 - ➢ 幾何非線性(Geometric nonlinearity)
 - ✓ 大變形、大位移

- ▶ 材料非線性(Material nonlinearity)
 - ✓ 非線性行為之材料特性,即應力應變曲線非線性關係

- ▶ 邊界非線性(Contact analysis)
 - ✓ 非線性之接觸行為,如: Frictional、Frictionless、Rough

設定<mark>Engineering Data</mark>,指定 為非線性材料性質

- 若應力分析範圍大於降伏強度,因應力與應變呈曲線關係,便成為材料非線 性分析,這和遵循虎克定律之線彈性分析完全不同
- 在結構分析中,若負荷過程的應力包含了彈性部分與超過強伏點的塑性部分, 可稱為彈塑性(elastoplastic)分析

材料 亍為	變形 型式	與應變率 (或時間) 之關 係 (Rate dependency)	材料性質分類	材料模型 (Material laws)
<u></u> 泉性	彈性	無關 (Rate-independent)	Linear elastic	Hooke's law
				Mooney-Rivlin
	弾性	無關 (Rate-independent)	Hyperelastic	Arruda-Boyce
				Blatz-Ko
			Multilinear elastic	Multilinear elastic
		相關 (Rate-dependent)	Viscoelasticity	Viscoelasticity
				Bilinear isotropic
	非彈性	無關 (Rate-independent) 主	leatronic hardoning placticity	Multilinear isotropic
			isou opic nardening plasucity	Voce's nonlinear isotropic
				Anisotropic
				Bilinear kinematic
線性			Kinematic hardening plasticity	Multilinear kinematic
				Chaboche
			Combined kinematic and instrumin	Chaboche and bilinear isotropic
			bardening plasticity	Chaboche and multilinear isotropic
			naruening plasticity	Chaboche and Voce's
			Pressure-dependent plasticity	Druger-Prager
		相關 (Rate-dependent)	Visconlacticity	Creep
			viscopiasticity	Anand
			Combined areas and jestropia	Creep and bilinear isotropic
			bardening plasticity	Creep and multilinear isotropic
			naraening plasuoity	Creep and Voce's 14

Material Nonlinearity – 彈塑性分析

- 塑性力學(plasticity)所研究的對象是延性材料在降伏後(應力>S_y)所發生的 塑性變形,屬於材料非線性分析的一種,由圖可看出結構受力過程包括了彈 性與塑性變形,這類分析稱為彈塑性(elastoplastic)分析
- ■材料達到塑性後·主要現象為產生應變硬化(strain hardening)與永久變形
- 若材料達到塑性變形(應力>S_y),當外力移除後將留下永久變形,圖中之_p 即為移除外力後所殘留之塑性應變(plastic strain),且在許多情況下會有殘 留應力(residual stress)存在於材料內部

Material Nonlinearity – 彈塑性分析

- 相對的在數學解析或有限元素分析上,有以下幾種應力應變曲線模式:
 - 1. 彈性-完全塑性(elastic perfectly-plastic)
 - 2. 雙線性(bi-linear)
 - 3. 多線段(multi-linear)
 - 4. 塑性曲線

Α Static Structural 21 2 🥏 Engineering Data 3 Geometry < 🖌 ✓ 🖌 Model 4 ? 🍓 Setup 5 7_ Solution 6 7 🥪 Results 7

■ Engineering Data(工程資料)

٨			Unsaved Project - Workbench	Ì			- 0 ×
File View Tools Units Help							
🐴 New 对 Open 🛃 Save 😹 Save As	👔 Imp	ort 🛛 ኛ Reconnect 🛛 Refresh Project 🍼 Updat	e Project 🛛 😋 Return to Project 🎧 Compa	act Mode	Y 🗰		
Toolbox - T ×	Outline	of Schematic A2: Engineering Data	- 4	X Table	of Properties Row 5: Isotropic Elasticity		→ ₽ X
Physical Properties		A B C	D		A B		
🗆 Linear Elastic	1	Contents of Engineering Data 🗦 🐼 S.,	. Description	1	Temperature (C) 🚊 Poisson's Ratio	-	
Isotropic Elastidty	2	Material		2	0.3	-	
🚰 Orthotropic Elasticity			Fatique Data at zero mean stress comes	*		-	
🔁 Anisotropic Elasticity	3	🗞 Structural Steel	from 1998 ASME BPV Code, Section 8, Di	v		1	
Experimental Stress Strain Data			2, Table 5-110.1				
🔁 Uniaxial Test Data	4	Secretical bone					
🔁 Biaxial Test Data	*	Click here to add a new material					
Shear Test Data			-				
Volumetric Test Data		材料號碼及名相	単 一 し し し し し し し し				
Simple Shear lest Data							
2 Uniaxial Compression Test Data							
2 Neo-Hookean							
r Arruda-Bovœ	Properti	es of Outline Row 4: cortical bone	↓ 4	× Chart	t of Properties Row 5: Isotropic Elasticity		▼ Ŧ X
f≩ Gent		A	B C D	E	1		
🖓 Blatz-Ko	1	Property	Value Unit 🐼	gi Gi	0.5		Poisson's Ratio 🛶
Mooney-Rivlin 2 Parameter	2	🗆 🔀 Isotropic Elasticity		<u>.</u>		• • • • • • • • • • • • • • • • • • • •	
🔁 Mooney-Rivlin 3 Parameter	3	Derive from	Young's M	sor	0		
Mooney-Rivlin 5 Parameter	4	Young's Modulus	17000 MPa 🔽	ois .	-0.5		
Mooney-Rivlin 9 Parameter	5	Poisson's Ratio	0.3		-1		
Polynomial 1st Order	6	Bulk Modulus			-1 -0.5	o o.	5 1
Polynomial 2nd Order	7	Shear Modulus	6.5385E- 數1且 則 人			Temperature [C]	
							-
	Message	25					▼ # ×
们们小千千寸十二千里天只		A	В			C	D
🔀 Ogden 1st Order	1	Туре	Text			Associatio	n Date/Time
🔁 Ogden 2nd Order	2	Events Automotive Powertrain Fluid-Structure Inter	action (FSI)				
🔁 Ogden 3rd Order	3	Events Ask the Expert - External Data Mapping in A	NSYS Workbench & amp; Mechanical 14.0				
	4	Events Understanding Hardware Selection for Struc	tural Mechanics				
View All / Customize	5	Events SPE Annual Technical Conference & amp; Ext	hibition				· · · ·

Nonlinear – Ex.12-1

殘留應力分析

如圖所示類似彈簧片的結構,其尺寸為I=0.02m,h=0.015m,a=0.02m,b=0.01m,圓角 R=0.001m,厚度t=0.001m。邊界條件如圖,長度a之底面部分全部拘束固定,當給定之y方向位 移dy=-0.002m時,該結構若有塑性變形,求出移除負荷後的殘留變形。

(1)材料為**bilinear material**、楊氏模數E=210000×10⁶Pa、其真應力應變曲線如圖之BISO曲線、 $E_T=30000\times10^6$ Pa、普松比v=0.3、降伏強度S_v=200×10⁶Pa。 σ

Nonlinear – Ex.12-1

bilinear material

Type: Equivalent Total Strain Unit: m/m Time: 2 2023/2/14 下午 03:40

0.002217 Max 0.0019707 0.0017244 0.001478 0.0012317 0.00098535 0.00073901 0.00049268 0.00024634 2.2132e-13 Min

Step. 2

殘留總應變(彈性+塑性)

等效總應變 Equivalent Total Strain

等效應力 Equivalent Stress

殘留應力分析

如圖所示類似彈簧片的結構,其尺寸為I=0.02m,h=0.015m,a=0.02m,b=0.01m,圓角 R=0.001m,厚度t=0.001m。邊界條件如圖,長度a之底面部分全部拘束固定,當給定之y方向位 移d_y=-0.004m時,該結構若有塑性變形,求出移除負荷後的殘留變形。

(2)材料為multilinear material,數據採用自文獻,楊氏模數E=71200MPa,普松比v=0.31,降 伏強度S_y=260MPa,真應力應變曲線原為一實際曲線,經MISO之多直線段簡化且輸入ANSYS後 如圖,各點座標如下所示。

multilinear material

1 (0, 260) 2 (0.0066, 341.68) 3 (0.0083, 358.34) 4 (0.0133, 375.01) 5 (0.0266, 408.34) 6 (0.0566, 441.68)

Nonlinear – Ex.12-2

Step. 2 multilinear material

Type: Equivalent Total Strain Unit: m/m Time: 2 2023/4/25 下午 11:09

0.0001826 Max 0.00016231 0.00014202 0.00012173 0.00010145 8.1156e-5 6.0867e-5 4.0578e-5 2.0289e-5 7.6132e-17 Min

Type: Equivalent (von-Mises) Stress Unit: Pa Time: 2 2023/4/25 下午 11:08 4.585e6 Max 4.0756e6 3.5661e6 3.0567e6 2.5472e6 2.0378e6 1.5283e6 1.0189e6 5.0945e5 5.4144e-6 Min

殘留總應變(彈性+塑性)

等效總應變 Equivalent Total Strain

等效應力 Equivalent Stress

殘留應力分析

如圖所示雙螺紋骨釘結構,邊界條件如圖,細螺紋段全部拘束固定,底部給定軸向位移5mm(其他兩方向固定),比較當材料為線性與非線性時,最大應力與變形量之差異,若該結構有產生塑性變形,求出移除負荷後的殘留變形。

(1)材料為鈦合金,設為線性材料,楊氏模數E=110000Mpa,普松比v=0.3。

(2)材料為鈦合金,設為**非線性材料**,楊氏模數E=110000Mpa,普松比v=0.3,Tangent Modulus E_T=1250MPa,降伏強度S_v=800MPa。

Nonlinear – Ex.13

學習目標 •材料性質設定 •位移控制設定 •單軸變形量顯示

殘留應力分析

如圖所示雙螺紋骨釘結構,邊界條件如圖,細螺紋段全部拘束固定,底部給定軸向位移5mm(其他兩方向固定),比較當材料為線性與非線性時,最大應力與變形量之差異,若該結構有產生塑性變形,求出移除負荷後的殘留變形。

(1)材料為鈦合金,設為線性材料,楊氏模數E=110000Mpa,普松比v=0.3。

Nonlinear – Ex. 13

學習目標 • 材料性質設定 • 位移控制設定 • 單軸變形量顯示

26

殘留應力分析

如圖所示雙螺紋骨釘結構,邊界條件如圖,細螺紋段全部拘束固定,底部給定軸向位移5mm(其他兩方向固定),比較當材料為線性與非線性時,最大應力與變形量之差異,若該結構有產生塑性變形,求出移除負荷後的殘留變形。

(2)材料為鈦合金,設為**非線性材料**,楊氏模數E=110000Mpa,普松比v=0.3,Tangent Modulus E_T=1250MPa,降伏強度S_v=800MPa。

Nonlinear – Ex.13

學習目標

材料性質設定
位移控制設定
單軸變形量顯示

殘留應力分析

如圖所示雙螺紋骨釘結構,邊界條件如圖,細螺紋段全部拘束固定,底部給定軸向位移5mm(其他兩方向固定),比較當材料為線性與非線性時,最大應力與變形量之差異,若該結構有產生塑性變形,求出移除負荷後的殘留變形。

(2)材料為鈦合金,設為**非線性材料**,楊氏模數E=110000Mpa,普松比v=0.3,Tangent Modulus E_T=1250MPa,降伏強度S_v=800MPa。

Contact Analysis

- 有限元素接觸分析是於物體之間的接觸面上加入非貫穿(non-penetration) 條件
- 以下圖之兩物體接觸為例,首先須將Sa和Sb兩個面定義為接觸面,下令兩 接觸面不可貫穿,如此一來,只要圓形物體受力變形,便可透過兩接觸面Sa 和Sb將力量傳至矩形物體,使得矩形物體也跟著變形,即完成了接觸分析
- ANSYS是利用接觸元素(contact elements)來模擬接觸面,只要接觸區域 的接觸元素一被建立,計算時就會考慮到接觸條件

Contact Analysis

(未建立接觸元素)

Contact Analysis

■ 在ANSYS定義中,目標面(Target surface)的節點可以穿透接觸面(Contact surface),接觸面的節點則不可穿透目標面

■ 接觸對之接觸元素和目標元素建立原則

目標面(Target surface)	接觸面(Contact surface)
網格較粗	網格較細
剛性較大(硬)	剛性較小(軟)
面積顯著較大(平面、凹面)	面積顯著較小(尖、凸面)

資料來源https://www.youtube.com/watch?v=kQgYAisb5V4&list=PLF1WR5I3KTKQ4IQkA56C1m-FU40mB1mzz&index=3

實常數與摩擦係數

- 關於接觸對之非貫穿接觸條件,是由目標元素和接觸元素所共用的實常 數(real constants)來決定。
- 而經常設定的實常數有四個,分別為FKN、FTOLN、FKT、TAUMAX
 - ·摩擦係數則於材料係數中給定·其符號為MU。
- ANSYS面對面接觸元素內定之計算法則為augmented Lagrangian method,所以必須設定接觸剛度(contact stiffness) KN和貫穿公差 (penetration tolerance)兩種計算常數,其在面對面接觸元素之實常數 中,接觸剛度和貫穿公差分別使用FKN和FTOLN兩個實常數來設定。
- FKN之意義如圖所示,可想像兩物體有限元素模型接觸對之接觸面上, 有一接觸彈簧(contact spring),其彈簧係數即為接觸剛度,而接觸剛 度KN定義為FKN乘以接觸體之剛度

FKN 經驗值

一般經驗值為:(a)針對有大體積變形(bulk deformation)之接觸 狀況,例如圖上之兩物體接觸,先設定FKN=1,再測試答案合理 性;(b)若兩物體之接觸情形有彎曲(bending)狀況,例如圖下的 彎曲接觸,先設定FKN=0.01~0.1,再測試答案合理性。

FKN	Max. SEQV
0.001	4,000
0.01	20,000
0.1	65,000
1	91,000
10	92,900
100	93,000

FTOLN

- 在接觸面的計算上,兩物體接觸貫穿量必須小於貫穿公差才算是 接觸
- 而FTOLN代表了貫穿公差之計算參數,ANSYS定義之貫穿公差為FTOLN乘以接觸面底下元素深度h,如圖所示。
- ANSYS以庫倫摩擦模型(Coulomb friction model)來模擬接觸摩 擦現象,公式為:
- 越小的貫穿公差(越小的FTOLN)越接近實際接觸情況,過小的貫穿公差會造成數值無法收斂,FTOLN內定值為0.1(常設定範圍 0.01-0.05)

penetration tolerance = (FTOLN)*h

2D模型如圖所示,其為剛性接觸的兩物體且下端整面為固定並於上端

邊線受一5MPa之壓力,請針對該模型進行接觸剛性分析。

A

Static Structural

Finding Data

Finding Data
Finding Data
Finding Data
Finding Data
Finding Data
Finding Data
Finding Data
Finding Data
Finding Data
Finding Data
Finding Data
Findi

- 介面條件設定
 - 模型為組合件時,若要組合件間能共用面,達到力量直接傳遞時,必須將此部份 組件形成一個群組>From New part
 - ➢ 若要組合件間能有各自的面,達到contact效果時,則不須進行此動作,模型匯入 後軟體會自動判斷出非連續面之部份

- 接觸(Contact)設定
 - ▶ 軟體會自動偵測到不同part之界面,並於Connection中顯示所有之contact區域
 - ▶ 接觸行為設定
 - Bonded
 - 預設項目,沒有相對滑動和分離,會忽略初始穿刺(penetration),模擬為相互連接
 - ✓ No Separation
 - •類似Bonded,僅適用於面(3D)或邊(2D)之接觸,沒有相對分離,僅可延接觸面有些微無摩擦滑動
 - ✓ Frictionless
 - 此為單邊接觸,假設摩擦係數為0,允許相對滑動,出現分離時法向量壓力為0,法向會分離
 - ✓ Rough
 - 類似Frictionless,有摩擦係數,無相對滑動,法向會分離
 - Frictional
 - 有摩擦係數,有相對滑動,法向會分離

A Static Structural

Engineering Data

Geometry

Model

🍓 Setup

Solution
Results

5

× .

_

V 🔒

?

7

人工牙根分析

請構出硬質骨與鬆質骨圓柱模型,尺寸如圖所示,並將外部CAD軟體建構出之植體檔(screw.igs) 匯入,施加側向力200N負載於植體頂部(已於植體頂部建構一凹點特徵)上,並設定硬質骨/鬆質骨 外側自由度為0(如下圖)。各材料特性:硬質骨(楊氏係數17000MPa;蒲松比0.3)、鬆質骨(楊氏係 數200MPa;蒲松比0.2)及植體(鈦合金楊氏係數110000MPa;蒲松比0.33),採用四面體網格,網 格尺寸:植體0.5mm、硬質骨0.8mm、鬆質骨1.0mm、硬質骨內側螺紋面0.5mm。觀察硬質骨最 大主應變(Maximum Principal strain)及植體最大等效應力(von-Mises stress)情形。

(1) 植體與硬質骨/鬆質骨界面未結合(unbonded)狀態之設定(模擬植體剛植入骨頭)

(2) 植體與硬質骨/鬆質骨界面結合(bonded)狀態之設定(模擬植體與骨頭已骨整合)

(1) Unbonded

Type: Equivalent (von-Mises) Stress Unit: MPa Time: 1 2023/4/25 下午 09:55 5450.3 Max

4844.7 4239.1 3633.5 3028 2422.4 1816.8 1211.3 605.71 0.14336 Min

Type: Maximum Principal Elastic Strain Unit: mm/mm Time: 1 2023/4/25 下午 10:01 0.0063057 Max 0.0056054 0.0042047 0.0035043 0.002804 0.0021037 0.0014033 0.00070297 2.6203e-6 Min

Max

Screw

等效應力 Equivalent Stress

Cortical Bone

最大主應變 Maximum Principal Strain

(2) Bonded

Screw

等效應力 Equivalent Stress

Cortical Bone

最大主應變 Maximum Principal Strain

椎籠分析

請匯入外部CAD軟體建構之椎籠上半部圖檔(cage.igs),包括右圖之上方三零件(如右圖所示),施 加垂直向下位移0.6mm於椎籠頂部平面上,並限制連桿下方與圓軸接觸位置(如下圖綠色箭頭處) 僅可做旋轉運動(X/Z方向自由度為0)。材料楊氏係數110000MPa、蒲松比0.3,採用四面體網格、 網格尺寸0.5mm,上方兩圓軸與頂板之接觸設定(contact)為Frictional、摩擦係數0.3 。觀察整體 結構運動與破壞情形,並求出最大等效應力(von-Mises stress)。

非線性材料

如圖為一冰箱門封元件,由兩鋼板及一長條形封條組成。封條為超彈性材料,其材料特性由實驗 量測得到(TESTDATA),包含單軸/雙軸拉伸測試及剪力測試。

本習題將學習如何藉由實驗數據輸入得到超彈性材料特性,並模擬封條受兩鋼板擠夾之力學行為。此次將以2D進行模型建構,並以PLANE STRAIN進行模擬後觀察其最大主應力(變)/最小主應力(變)/剪應力(變)。

位移0.85"

Nonlinear & Contact – Ex.17

五楼最佳化(Topology Optimization)是一種結構優化技術,可自行定義設計範圍(Design Domain),根據給定的限制條件與目標函數,解出符合給定條件之最佳結構

- 五楼最佳化結合有限元素法及最佳化演算法,將最佳密度值分配給定義域中的每個元素,求得該結構之最佳材料分布情形
- 可實現在一定的結構強度要求下,將材料做出最有效之配置,以節省不必要 的材料達到輕量化之目標

Sutradhar et. al., 2017

圖片來源: https://courses.ansys.com/index.php/courses/topology-optimization-using-ansys-mechanical/lessons/topology-optimization-of-a-bell-crank-lesson-1/

Topology Optimization (Structural Optimization)

Optimization Region

Iteration Number: N/A

2023/2/25 上午 07:45

Exclusion Region

- ➢ 設計範圍 Optimization Region
 - ✓ Design Region
 - ✓ Exclusive Region

D	Details of "Optimization Region" 🗸 🗸 🗸 🗸				
	🖃 Design Region				
	Scoping Method	Geometry Selection			
	Geometry	All Bodies			
Ξ	Exclusion Region				
	Define By	Boundary Condition			
	Boundary Condition	All Boundary Conditions			
	Definition				
Suppressed No					
	 Optimization Option Optimization Type Topology Optimization - Density Based 				

Topology Optimization (Structural Optimization)

- ▶ 目標函數 Objective
- ▶ 限制條件 Response Constraint

Objective

В Structural Optimization 1 _ 2 Engineering Data ? 🖌 3 Geometry ?, Model ? 5 Setup ? 🖌 6 6 Solution ?. 9 7 Results

Structural Optimization (Topology Optimization)

▶ 最佳結構 - Topology Density(拓樸密度)

Topology Density Type: Topology Density Iteration Number: 120 2023/2/25 上午 07:54

Remove (0.0 to 0.4) Marginal (0.4 to 0.6) Keep (0.6 to 1.0)

D	etails of "Topology Density" :		×
-	Scope		^
	Scoping Method	Optimization Region	
	Optimization Region	Optimization Region	
-	Definition		
	Туре	Topology Density	
	Ву	Iteration	
	Iteration	Last	
	Retained Threshold	0.5	
	Exclusions Participation	Yes	
	Calculate Time History	Yes	
	Suppressed	No	
-	Results		
	🗌 Minimum	1.e-003	
	Maximum	1.	~

Structural Optimization – Ex.18

平板模型如圖所示,請針對該模型進行拓撲最佳化(Topology Optimization),最佳化目標為剛度 最大情形下,減少40%體積。材料使用Structural steel,網格形式採用四面體(Tetrahedrons), 網格尺寸為1mm,平板左側固定並於圓孔曲面上施以力量(Y方向,向下10N)。

Unit : mm

Structural Optimization – Ex.18

Equivalent Stress Type: Equivalent (von-Mises) Stress Unit: MPa Time: 1 s 2023/2/25 上午 07:02

等效應力 Equivalent Stress

Topology Density Type: Topology Density Iteration Number: 20 2023/2/25 上午 07:05

拓樸密度結構 Topology Density

Design Validation – Ex.19

三角bracket模型如圖所示,請針對該模型右側區塊進行拓撲最佳化(Topology Optimization), 最佳化目標為剛度最大情形下,減少50%體積。材料使用Structural steel,網格尺寸為1mm, 左側固定,右側圓孔曲面上施以力量,並利用Design Validation將最佳化結構再次進行力學分析 。試比較不同力量下,最佳化結果與結構應力分析結果差異。

- 1) Y方向,向下100N
- 2) X方向·向右100N

100N

100N

Design Validation – Ex.19

Type: Equivalent (von-Mises) Stress Unit: MPa Time: 1 s 2023/3/23 上午 07:59

原始模型等效應力(向下) Equivalent Stress

原始模型等效應力(向右) Equivalent Stress

Remove (0.0 to 0.4) Marginal (0.4 to 0.6) Keep (0.6 to 1.0)

拓樸密度結構(向下) Topology Density Type: Topology Density Iteration Number: 10 2023/3/23 上午 07:59

Remove (0.0 to 0.4) Marginal (0.4 to 0.6) Keep (0.6 to 1.0)

Design Validation – Ex.17

Type: Equivalent (von-Mises) Stress Unit: MPa Time: 1 s 2023/3/23 上午 07:59

原始模型等效應力(向下) Equivalent Stress

