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Torsional Loads on Circular Shafts

• Interested in stresses and strains of 

circular shafts subjected to twisting 

couples or torques

• Generator creates an equal and 

opposite torque T’

• Shaft transmits the torque to the 

generator

• Turbine exerts torque T on the shaft
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3.1 Circular Shafts in Torsion (p150)

   dAdFT 

• Net of the internal shearing stresses is an 

internal torque, equal and opposite to the 

applied torque, ρ is radius

• Unlike the normal stress due to axial loads, the 

distribution of shearing stresses due to torsional 

loads can not be assumed uniform.
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• From observation, the angle of twist of the 

shaft is proportional to the applied torque and 

to the shaft length.
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T






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Shaft Deformations (p151)

• When subjected to torsion, every cross-section 

of a circular shaft remains plane and 

undistorted.

• Cross-sections for hollow and solid circular 

shafts remain plain and undistorted because a 

circular shaft is axisymmetric.

• Cross-sections of noncircular (non-

axisymmetric) shafts are distorted when 

subjected to torsion.
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Shearing Strain (p153)

• Consider an interior section of the shaft.  As a 

torsional load is applied, an element on the 

interior cylinder deforms into a rhombus.  

• Shear strain is proportional to twist and radius

maxmax    and   






cL

c


L
L


  or      

• It follows that

• Since the ends of the element remain planar, 

the shear strain is equal to angle of twist.



MECHANICS OF MATERIALS Beer  • Johnston  •  DeWolf  •  Mazurek

3- 6

Stresses in Elastic Range (p153, 154)

J
c

dA
c

dAT max2max 



   

• Recall that the sum of the moments from 

the internal stress distribution is equal to 

the torque on the shaft at the section,

   and   max
J

T

J

Tc 
 

• The results are known as the elastic torsion 

formulas,

• Multiplying the previous equation by the 

shear modulus,

max


 G
c

G 

max



c



From Hooke’s Law,  G , so

The shearing stress varies linearly with the 

radial position in the section.
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Concept Application 3.1
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Normal Stresses (p157)

• Note that all stresses for elements a and c have 

the same magnitude

• Element c is subjected to a tensile stress on 

two faces and compressive stress on the other 

two.  

• Elements with faces parallel and perpendicular 

to the shaft axis are subjected to shear stresses 

only.  Normal stresses, shearing stresses or a 

combination of both may be found for other 

orientations.
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• Consider an element at 45o to the shaft axis,

• Element a is in pure shear.  
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Torsional Failure Modes

• Ductile materials generally fail in 

shear.  Brittle materials are weaker in 

tension than shear. 

• When subjected to torsion, a ductile 

specimen breaks along a plane of 

maximum shear, i.e., a plane 

perpendicular to the shaft axis.

• When subjected to torsion, a brittle 

specimen breaks along planes 

perpendicular to the direction in 

which tension is a maximum, i.e., 

along surfaces at 45o to the shaft axis.
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Shaft BC is hollow with inner and outer 

diameters of 90 mm and 120 mm, 

respectively.  Shafts AB and CD are solid 

of diameter d.  For the loading shown, 

determine (a) the minimum and maximum 

shearing stress in shaft BC, (b) the 

required diameter d of shafts AB and CD

if the allowable shearing stress in these 

shafts is 65 MPa.

Sample Problem 3.1 (p158)

SOLUTION:

• Cut sections through shafts AB

and BC and perform static 

equilibrium analyses to find 

torque loadings.

• Given allowable shearing stress 

and applied torque, invert the 

elastic torsion formula to find the 

required diameter.

• Apply elastic torsion formulas to 

find minimum and maximum 

stress on shaft BC.
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Sample Problem 3.1
SOLUTION:

• Cut sections through shafts AB and BC

and perform static equilibrium analysis 

to find torque loadings.
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Sample Problem 3.1
• Apply elastic torsion formulas to 

find minimum and maximum 

stress on shaft BC.

• Given allowable shearing stress and 

applied torque, invert the elastic torsion 

formula to find the required diameter.
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Sample Problem 3.2 (p159)
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Problems

• What is moment of inertia?

• 3.11, 3.19, 3.20 (p163, p164)
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3.2 Angle of Twist in Elastic Range (p167)

• Recall that the angle of twist and maximum 

shearing strain are related,

L

c
 max

• In the elastic range, the shearing strain and shear 

are related by Hooke’s Law,

JG

Tc

G
 max

max




• Equating the expressions for shearing strain and 

solving for the angle of twist,

JG

TL


• If the torsional loading or shaft cross-section 

changes along the length, the angle of rotation is 

found as the sum of segment rotations


i ii

ii

GJ

LT

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Concept Application 3.2
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Concept Application 3.3
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Concept Application 3.4
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• Given the shaft dimensions and the applied torque, 

we would like to find the torque reactions at A and 

B.

Statically Indeterminate Shafts (p171)

• From a free-body analysis of the shaft,

which is not sufficient to find the end torques.  

The problem is statically indeterminate.

mN120  BA TT

mN120
12

21  AA T
JL

JL
T

• Substitute into the original equilibrium equation,

AB
BA T
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• Divide the shaft into two components which 

must have compatible deformations,
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Concept Application 3.5
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Sample Problem 3.3
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Sample Problem 3.3
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Sample Problem 3.4 (p173)

Two solid steel shafts are connected 

by gears.  Knowing that for each shaft 

G = 77 GPa and that the allowable 

shearing stress is 55 MPa, determine 

(a) the largest torque T0 that may be 

applied to the end of shaft AB, (b) the 

corresponding angle through which 

end A of shaft AB rotates.

SOLUTION:

• Apply a static equilibrium analysis on 

the two shafts to find a relationship 

between TCD and T0 .

• Find the corresponding angle of twist 

for each shaft and the net angular 

rotation of end A.

• Find the maximum allowable torque 

on each shaft – choose the smallest.

• Apply a kinematic analysis to relate 

the angular rotations of the gears.
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Sample Problem 3.4

SOLUTION:

• Apply a static equilibrium analysis on 

the two shafts to find a relationship 

between TCD and T0 .

 
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• Apply a kinematic analysis to relate 

the angular rotations of the gears.
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• Find the T0 for the maximum 

allowable torque on each shaft –

choose the smallest.

Sample Problem 3.4

• Find the corresponding angle of twist for each 

shaft and the net angular rotation of end A.
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Problems

• Sample problem 3.5

• 3.41 (p179)
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3.4 Design of Transmission Shafts (p187)

TP 
• ω    is the angular velocity

• ω = 2π f, f is frequency of rotation

fTP 2
f

P
T

2


max

max



T

c

J

J

Tc

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Concept  Application 3.6

Concept  Application 3.7
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3.5 Stress Concentrations in a Circular Shafts (p187)

• The derivation of the torsion formula,

assumed a circular shaft with uniform 

cross-section loaded through rigid end 

plates.

J

Tc
max

J

Tc
Kmax

• Experimental or numerically determined 

concentration factors are applied as

• The use of flange couplings, gears and 

pulleys attached to shafts by keys in 

keyways, and cross-section discontinuities 

can cause stress concentrations

Fig. 3.32 Stress-concentration factors 
for fillets in circular shafts.
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Sample  Problem 3.6
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Problems

• 3.85, 3.87 (p194)


