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2.1 An Introduction to Stress and Strain

2.1 A Normal Strain under Axial Loading
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Stress-Strain Test (Extensometer)

This machine is used to test tensile test specimens, such as 
those shown in this chapter.

Test specimen with tensile load.
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2.1 B Stress-Strain Diagram:  Ductile Materials p60
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Stress-Strain Diagram:  Brittle Materials p61  

Fig 2.7 Stress-strain diagram for a 
typical brittle material.

2.8
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2.1 D Hooke’s Law: Modulus of Elasticity p63

• Below the yield stress

Elasticity of Modulus         

or Modulus Youngs



E

E

• Strength is affected by alloying, 

heat treating, and manufacturing 

process but stiffness (Modulus of 

Elasticity) is not.

Fig 2.16 Stress-strain diagrams for iron and 
different grades of steel.
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2.1 E Elastic vs. Plastic Behavior p65

• If the strain disappears when the 

stress is removed, the material is 

said to behave elastically.  

• When the strain does not return 

to zero after the stress is 

removed, the material is said to 

behave plastically.

• The largest stress for which this 

occurs is called the elastic limit.

Fig. 2.13
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• Homogeneous (均質)

– 材料的每一個質點都具有相同的材料特性

• Isotropic (等向)

– 材料的性質在每一個方向都一樣

Homogeneous & Isotropic

2.12
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2.1 F Repeated Loading and Fatigue

• Fatigue properties are shown on 

S-N diagrams.

• When the stress is reduced below 

the endurance limit, fatigue 

failures do not occur for any 

number of cycles.

• A member may fail due to fatigue

at stress levels significantly below 

the ultimate strength if subjected 

to many loading cycles.
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2.1 G Deformations Under Axial Loading p68
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Concept Application 2.1

Determine the deformation of 

the steel rod shown under the 

given loads.

SOLUTION:

• Divide the rod into components at 

the load application points.

• Apply a free-body analysis on each 

component to determine the 

internal force

• Evaluate the total of the component 

deflections.
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SOLUTION:

• Divide the rod into three 

components:



MECHANICS OF MATERIALS Beer  • Johnston  •  DeWolf  •  Mazurek

2- 15

Sample Problem 2.1 p70

The rigid bar BDE is supported by two 

links AB and CD.  

Link AB is made of aluminum (E = 70 

GPa) and has a cross-sectional area of 500 

mm2.  Link CD is made of steel (E = 200 

GPa) and has a cross-sectional area of (600 

mm2).  

For the 30-kN force shown, determine the 

deflection a) of B, b) of D, and c) of E.
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Sample Problem 2.1

Free body:  Bar BDE

SOLUTION: Displacement of B:

Displacement of D:
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Sample Problem 2.1
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Problems

• Page 71 Sample problem 2.2

• Page 77 2.26, 2.27
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2.2 Static Indeterminacy

• Structures for which internal forces and reactions 

cannot be determined from statics alone are said 

to be statically indeterminate.

• A structure will be statically indeterminate 

whenever it is held by more supports than are 

required to maintain its equilibrium.  

Fig. 2.21
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Concept Application 2.4

Determine the reactions at A and B for the steel 

bar and loading shown, assuming a close fit at 

both supports before the loads are applied.

• Solve for the reaction at A due to applied loads 

and the reaction found at B.

• Require that the displacements due to the loads 

and due to the redundant reaction be compatible, 

i.e., require that their sum be zero.

• Solve for the displacement at B due to the 

redundant reaction at B.

SOLUTION:

• Consider the reaction at B as redundant, release 

the bar from that support, and solve for the 

displacement at B due to the applied loads.
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Example 2.04
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Concept Application 2.04
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2.3 Problems involving temperature changes

• A temperature change results in a change in length or 

thermal strain.  There is no stress associated with the 

thermal strain unless the elongation is restrained by 

the supports.  
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Concept Application 2.6



MECHANICS OF MATERIALS Beer  • Johnston  •  DeWolf  •  Mazurek

Concept Application 2.6
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Problems

• Page 86 Sample problem 2.3

• Page 87 Sample problem 2.4
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2.4 Poisson’s Ratio

• For a slender bar subjected to axial loading:
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• The elongation in the x-direction is 

accompanied by a contraction in the other 

directions.  Assuming that the material is 

isotropic (no directional dependence),
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Concept Application 2.7
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2.5 Multiaxial Loading: Generalized Hooke’s Law

• For an element subjected to multi-axial loading, 

the normal strain components resulting from the 

stress components may be determined from the 

principle of superposition.  This requires:

1) strain is linearly related to stress

2) deformations are small
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• With these restrictions:
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Concept Application 2.8 p97
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2.7 Shearing Strain

• A cubic element subjected to a shear stress will 

deform into a rhomboid.  The corresponding shear

strain is quantified in terms of the change in angle 

between the sides,

 xyxy f  

• A plot of shear stress vs. shear strain is similar to the 

previous plots of normal stress vs. normal strain 

except that the strength values are approximately 

half.  For small strains, 

zxzxyzyzxyxy GGG  

where G is the modulus of rigidity or shear modulus.

Fig. 2.36

Fig. 2.37
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Concept Application 2.10 p102

A rectangular block of material with 

modulus of rigidity G = 630 MPa is 

bonded to two rigid horizontal plates.  

The lower plate is fixed, while the 

upper plate is subjected to a horizontal 

force P.  Knowing that the upper plate 

moves through 1.0 mm. under the 

action of the force, determine a) the 

average shearing strain in the material, 

and b) the force P exerted on the plate.

SOLUTION:

• Determine the average angular 

deformation or shearing strain of 

the block.

• Use the definition of shearing stress to 

find the force P.

• Apply Hooke’s law for shearing stress 

and strain to find the corresponding 

shearing stress.
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2.10 Stress and Strain Distribution under Axial 

Loading: Saint-Venant’s Principle p115

• Loads transmitted through rigid 

plates result in uniform distribution 

of stress and strain.

• Saint-Venant’s Principle:

Stress distribution may be assumed 

independent of the mode of load 

application except in the immediate 

vicinity of load application points.

• Stress and strain distributions become 

uniform at a relatively short distance 

from the load application points.

• Concentrated loads result in large 

stresses in the vicinity of the load 

application point.

• 聖維南原理（Saint Venant’s Principle）是彈性力學的基礎性原理，是
法國力學家聖維南於1855年提出的。其內容是：分佈於彈性體上一小塊面
積（或體積）內的荷載所引起的物體中的應力，在離荷載作用區稍遠的地
方，基本上只同荷載的合力和合力矩有關；荷載的具體分佈只影響荷載作
用區附近的應力分佈。
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2.11 Stress Concentrations: Hole

Discontinuities of cross section may result in 

high localized or concentrated stresses. ave

max




K

(a) Flat bars with holes
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Stress Concentration: Fillet

(b) Flat bars with fillets
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Concept Application 2.12

Determine the largest axial load P

that can be safely supported by a 

flat steel bar consisting of two 

portions, both 10 mm thick, and 

respectively 40 and 60 mm wide, 

connected by fillets of radius r = 8 

mm.  Assume an allowable normal 

stress of 165 MPa.

SOLUTION:

• Determine the geometric ratios and 

find the stress concentration factor 

from Fig

• Apply the definition of normal stress to 

find the allowable load.

• Find the allowable average normal 

stress using the material allowable 

normal stress and the stress 

concentration factor.
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(b) Flat bars with fillets
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Problems

• Page 131 2.113

• Page 141 2.127


